Қарағанды облысы білім басқармасы Бухар жырау ауданының білім бөлімі «Қушоқы жалпы білім беретін мектеп» КММ

КГУ «Кушокинская общеобразовательная школа» отдела образования Бухар-Жырауского района управления образования Карагандинской области

«Согласовано»
Зам. директора по ВР.
Чечихина Н.Ю. %
«29»08 2025 год

Календарно-тематический план

По кружку: {"Конструирование и моделирование по робототехнике", "Робототехника бойынша құрылымдау және модельдеу"}

Учебный год: 2025-2026

Учитель предметник: Оразбекова Д.А.

Nº	Тема	Дата	Цель
1	Вводное занятие. Техника безопасности	03.09.2025	Понятие «робот», «робототехника», «робоспорт». Применение роботов в различных сферах жизни человека, значение робототехники. Просмотр видеофильма о роботизированных системах.
	Введение в специальность. Робоспорт.	08.09.2025	Показ действующей модели робота и его программ: на основе датчика освещения, ультразвукового датчика, датчика касания
3	Первая программа	15.09.2025	Ознакомление с комплектом деталей для изучения робототехники: контроллер, сервоприводы, соединительные кабели, датчики-касания, ультразвуковой, освещения. Порты подключения. Создание колесной базы на гусеницах
4	Ознакомление с визуальной средой программирования	22.09.2025	Понятие «среда программирования», «логические блоки». Показ написания простейшей программы для робота
5	Первичные знания о роботах из конструктора	29.09.2025	
6	Первичные знания о роботах из конструктора	06.10.2025	
7	Ознакомление с визуальной средой программирования	13.10.2025	
8	Робот в движении	20.10.2025	
9	Робот в движении	03.11.2025	Написание линейной программы. Понятие «мощность мотора», «калибровка». Зубчатая передача. Применение блока «движение» в программе.
10	Понятие «цикл»	17.11.2025	Использование блока «цикл» в программе. Создание и отладка программы для движения робота по «восьмерке»
11	Робот-танцор	24.11.2025	Понятие «генератор случайных чисел». Использование блока «случайное число» для управления движением робота
12	Робот-танцор	01.12.2025	
13	Робот рисует	08.12.2025	
	Робот, повторяющий воспроизведенные действия	15.12.2025	
15	Робот рисует	15.12.2025	
	Робот, повторяющий воспроизведенные действия	22.12.2025	
17	Робот, определяющий расстояние до препятствия. Ультразвуковой датчик	12.01.2026	

18	Робот, определяющий расстояние до препятствия. Ультразвуковой датчик	19.01.2026	
19	Ультразвуковой датчик управляет роботом	26.01.2026	
20	Ультразвуковой датчик управляет роботом	02.02.2026	
21	Робот-прилипала	09.02.2026	Робот, следящий за протянутой рукой и выдерживающий требуемое расстояние в динамике. Настройка иных действий в зависимости от показаний ультразвукового датчика
22	Робот-прилипала	16.02.2026	
23	Использование нижнего датчика освещенности	23.02.2026	
24	Движение вдоль линии	02.03.2026	
25	Робот с несколькими датчиками	09.03.2026	
26	Ускоренное движение по криволинейной траектории	16.03.2026	
27	Движение по прерывистой линии	31.03.2026	
28	Манипулятор робота	06.04.2026	
29	Манипулятор робота	13.04.2026	
30	Определение наклонной поверхности	20.04.2026	
31	Определение наклонной поверхности	27.04.2026	
32	Конструкции роботов для поворота в ограниченном пространстве	04.05.2026	
33	Конструкции роботов для поворота в ограниченном пространстве	11.05.2026	
34	Конструкции роботов для поворота в ограниченном пространстве	18.05.2026	

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Современный образовательный процесс должен быть направлен не только на передачу определенных знаний, умений и навыков, но и на разноплановое развитие ребенка, раскрытие его творческих возможностей, способностей, таких качеств личности как инициативность, самодеятельность, фантазия, самобытность, то есть всего того, что относится к индивидуальности человека. Практика показывает, что указанные требования к образованности человека не могут быть удовлетворены только школьным образованием: формализованное базовое образование все больше нуждается в дополнительном неформальном, которое было и остается одним из определяющих факторов развития склонностей, способностей и интересов человека, его социального и профессионального самоопределения.

Актуальность программы определяется востребованностью развития данного направления деятельности современным обществом.

<u>Программа «Робототехника</u>» удовлетворяет творческие, познавательные потребности заказчиков: детей (а именно мальчиков) и их родителей. Досуговые потребности, обусловленные стремлением к содержательной организации свободного времени реализуются в практической деятельности учащихся.

Программа «Робототехника» включает в себя изучение ряда направлений в области конструирования и моделирования, программирования и решения различных технических задач.

Дополнительная образовательная программа «Робототехника» **имеет научно-техническую направленность** с элементами естественно-научных элементов. Программа дает объем технических и естественно - научных компетенций, которыми вполне может овладеть современный школьник, ориентированный на научно-техническое и/или технологическое направление дальнейшего образования и сферу профессиональной деятельности. Программа ориентирована в первую очередь на ребят, желающих основательно изучить сферу применения роботизированных технологий и получить практические навыки в конструировании и программировании робототехнических устройств.

Интенсивное проникновение робототехнических устройств практически во все сферы деятельности человека — новый этап в развитии общества. Очевидно, что он требует своевременного образования, обеспечивающего базу для естественного и осмысленного использования соответствующих устройств и технологий, профессиональной ориентации и обеспечения непрерывного образовательного процесса. Фактически программа призвана решить две взаимосвязанные задачи: профессиональная ориентация ребят в технически сложной сфере робототехники и формирование адекватного способа мышления. **Педагогическая целесообразность** заключается не только в развитии технических способностей и возможностей средствами конструктивно-технологического подхода, гармонизации отношений ребенка и окружающего мира, но и в развитии созидательных способностей, устойчивого противостояния любым негативным социальным и социотехническим проявлениям.

сознательного акта учения в системе развивающего обучения лежит способность к продуктивному творческому воображению и мышлению. Более того, без высокого уровня развитие этих процессов вообще невозможно ни успешное обучение, ни самообучение. Именно они определяют развитие творческого потенциала человека. Готовность к творчеству формируется на основе таких качеств как внимание и наблюдательность, воображение и фантазия, смелость и находчивость, умение ориентироваться в окружающем мире, произвольная память и др. Использование программы позволяет стимулировать способность детей к образному и свободному восприятию окружающего мира (людей, природы, культурных ценностей), его анализу и конструктивному синтезу. Новизна данной программы определяется гибкостью по отношению к платформам реализуемых робототехнических устройств. Практически все программы дополнительного и профессионального образования ориентированы на одну платформу. Это обусловлено в равной степени финансовыми, временными, кадровыми и программными ограничениями (в каждом случае в своем соотношении). Например, широко рекламируемые в последнее время программы, построенные на базе Lego-роботов, обеспечивают базовое образование начинающих заниматься робототехникой, но предельно ограничены по широте реализации возможностями конструктора, предназначенного для детей дошкольного и младшего школьного возраста. Программы профессионального образования – очень широки в обзорной части, но в практической части подобны игольному ушку и крайне далеки от свободы творчества.

В основе предлагаемой программы лежит идея использования в обучении собственной активности учащихся. Концепция данной программы - теория развивающего обучения в канве критического мышления. В основе

Данная программа позволяет построить интегрированный курс, сопряженный со смежными направлениями, напрямую выводящий на свободное манипулирование конструкционными и электронными компонентами. Встраиваясь в единую линию, заданную целью проектирования, компоненты приобретают технологический характер, фактически становятся конструктором, позволяющим иметь больше степеней свободы творчества

Цель программы:

• развитие творческих и научно-технических компетенций обучающихся в неразрывном единстве с воспитанием коммуникативных качеств и целенаправленности личности через систему практикоориентированных групповых занятий, консультаций и самостоятельной деятельности воспитанников по созданию робототехнических устройств, решающих поставленные задачи.

Задачи программы:

- развивать научно-технические способности (критический, конструктивистский и алгоритмический стили мышления, фантазию, зрительно-образную память, рациональное восприятие действительности);
- расширять знания о науке и технике как способе рационально-практического освоения окружающего мира;
- обучить решению практических задач, используя набор технических и интеллектуальных умений на уровне свободного использования;

- формировать устойчивый интерес робототехнике, способность воспринимать их исторические и общекультурные особенности;
- воспитывать уважительное отношение к труду.

Категория обучающихся: учащиеся школы 11-17 лет

Кол-во часов: 1 год обучения -34 часов (1 час в неделю)

Примерные направления соревнований

- 1. Соревнования в процессе непосредственного противоборства. Требования к моделям прочность конструкции, достаточная мощность и маневренность, понимание физических принципов поведения движущегося механизма.
- 2. Соревнования на выполнение игровой ситуации. Требование к конструкции подвижность, согласованность движений, оперативность и развитость управленческого алгоритма.
- 3. Соревнования в преодолении сложной и естественной геометрии трассы. Требование к конструкции реализация сложной (слабо предсказуемой, адаптивной) траектории движения механизма.
- 4. Соревнования по правилам международных робототехнических олимпиад. Требования к конструкции по спецификации олимпиады.
- 5. Реализация собственных проектов в практической категории.

1 год обучения посвящен вхождению в сферу робототехники, профориентации. В большей степени используются навыки и стереотипы игры. Форма проведения занятий близка к игровой и в значительной мере базируется на заинтересованности ребенка в познавательных играх, носящих соревновательный характер. К этому году в большей степени относятся микросоревнования, соревнования прямого противоборства и соревнования на выполнение игровой ситуации. Воспитанник получает первый опыт командной работы и коллективной ответственности за результат.

2 год обучения призван обучить навыкам управления робототехническими устройствами. В наибольшей степени здесь формируется умение строить управление автономных модулей на основе различной реализации программного управления. Это подразумевает выделение значительного ресурса времени под освоение программирования для компьютера и технологического программирования. Значительную роль начинают играть соревнования на преодоление сложной геометрии трассы и соревнования по международным правилам, что позволяет удержать заинтересованность ребенка в процессе изучения сложного материала. Командная работа, подразумевающая функциональное распределение обязанностей, взаимозаменяемость и коллективную ответственность за результат, на данном этапе должна стать для воспитанника естественной формой деятельности. Ожидаемые результаты и способы их проверки:

после освоения данной программы воспитанник

- получит знания о -
- науке и технике как способе рационально-практического освоения окружающего мира;
- роботах, как об автономных модулях, предназначенных для решения сложных практических задач;
- истории и перспективах развития робототехники;
- робоспорте, как одном из направлений технических видов спорта;
- физических, математических и логических теориях, положенных в основу проектирования и управления роботами;
- философских и культурных особенностях робототехники, как части общечеловеческой культуры;
- овладеет –
- критическим, конструктивистским и алгоритмическим стилями мышления;
- техническими компетенциями в сфере робототехники, достаточными для получения высшего образования по данному направлению;
- набором коммуникативных компетенций, позволяющих безболезненно войти и функционировать без напряжения в команде, собранной для решения некоторой технической проблемы;
- разовьет фантазию, зрительно-образную память, рациональное восприятие действительности;
- научится решать практические задачи, используя набор технических и интеллектуальных умений на уровне их свободного использования;
- приобретет уважительное отношение к труду как к обязательному этапу реализации любой интеллектуальной идеи.

уровень освоенности программы контролируется в соревновательных формах: *микросоревнование, соревнование,* участие в конференции НОУ «Эврика», участие в выставке технического творчества, участие в тематических конкурсах.

Учебно-тематический план

Курс основан на использовании простых комплектов, идентичных Lego Mindstorms NXT 2.0 и визуальной среды программирования для обучения робототехнике LEGO MINDSTORMS Education NXT. Если используется комплект другого производителя, Lego-компоненты программно-аппаратного конструктора заменяются в соответствии с их функциональной идентичностью, но общая структура плана не изменяется. Таким образом *допускается использование программы на любой доступной функционально-полной платформе*. Это особенно важно для планирования, поскольку даже среди Lego-комплектов наблюдается значительная разница как в исполнении, так и в комплектации.

Основная ориентация программы 1 года обучения на усвоение центральных понятий робототехники с их непосредственной реализацией и проверкой. Акцент на робототехнические соревнования самых разных уровней, анализ моделей-лидеров, спецификации соревновательных полей и преамбул. Наряду с этим самостоятельную роль играет профориентационное собеседование в группах и персонально.

Изменение регламента и спецификаций робототехнических соревнований городского (и выше) уровня может привести к изменению порядка следования тем в целях обеспечения адекватной подготовки учащихся к заданным срокам.

Содержание программы обучения:

Тема занятия	Теоретическая часть	Практическая часть
Введение в	Понятие «робот»,	Ознакомление с комплектом
специальность.	«робототехника»,	деталей для изучения
Робоспорт.	«робоспорт». Применение	робототехники: контроллер,
Техника	роботов в различных сферах	сервоприводы,
безопасности	жизни человека, значение	соединительные кабели,
	робототехники. Просмотр	датчики-касания,
	видеофильма о	ультразвуковой, освещения.
	роботизированных системах.	Порты подключения.
	Показ действующей модели	Создание колесной базы на
	робота и его программ: на	гусеницах
	основе датчика освещения,	
	ультразвукового датчика,	
	датчика касания	
Первая программа	Понятие «программа»,	Написание программы для
	«алгоритм». Алгоритм	движения по кругу через

	1	
	движения робота по кругу,	меню контроллера. Запуск и
	вперед-назад, «восьмеркой»	отладка программы.
	и пр.	Написание других простых
		программ на выбор
		учащихся и их
		самостоятельная отладка
Ознакомление с	Понятие «среда	Интерфейс программы
визуальной средой	программирования»,	LEGO MINDSTORMS
программирования	«логические блоки». Показ	Education NXT и работа с
	написания простейшей	ним. Написание программы
	программы для робота	для воспроизведения звуков
		и изображения по образцу
Робот в движении	Написание линейной	Создание и отладка
	программы.	программы для движения с
	Понятие «мощность	ускорением, вперед-назад.
	мотора», «калибровка».	«Робот-волчок». Плавный
	Зубчатая передача.	поворот, движение по
	Применение блока	кривой
	«движение» в программе.	
Понятие «цикл»	Первая программа с циклом	Использование блока «цикл»
	Написание программ с	в программе.
	циклом	Создание и отладка
		программы для движения
		робота по «восьмерке»
Робот-танцор	Понятие «генератор	Создание программы для
	случайных чисел».	движения робота по
	Использование блока	случайной траектории. Робот
	«случайное число» для	без NXT-блока управления
	управления движением	
	робота	
Робот рисует	Теория движения робота по	Написание программы для
	сложной траектории	движения по контуру
Робот,	Промышленные	Робот, записывающий
повторяющий	манипуляторы и их отладка.	траекторию движения и

воспроизведенные	Блок	потом точно её
действия	«записи/воспроизведения»	воспроизводящий
Робот,	Робот, останавливающийся	Робот, выдерживающий
определяющий	на определенном расстоянии	расстояние отпрепятствия
расстояние до	до препятствия. Робот-	
препятствия	охранник	
Ультразвуковой		
датчик		
Ультразвуковой	Роботы – пылесосы, роботы-	Создание и отладка
датчик управляет	уборщики. Цикл и	программы для движения
роботом	прерывания	робота внутри помещения и
		самостоятельно огибающего
		препятствия.
Робот-прилипала	Программа с вложенным	Робот, следящий за
	циклом. Подпрограмма	протянутой рукой и
		выдерживающий требуемое
		расстояние в динамике.
		Настройка иных действий в
		зависимости от показаний
		ультразвукового датчика
Использование	Яркость объекта,	Робот, останавливающийся
нижнего датчика	отраженный свет,	на черной линии. Робот,
освещенности	освещенность,	начинающий двигаться по
	распознавание цветов	комнате, когда включается
	роботом	свет.
Движение вдоль	Калибровка датчика	Робот, движущийся вдоль
линии	освещенности	черной линии
Робот с	Датчик касания, типы	Создание робота и его
несколькими	касания	программы с задним
датчиками		датчиком касания и
		передним ультразвуковым
Ускоренное	Принципы	Робот, движущийся вдоль
движение по	дифференциального	черной линии
криволинейной	управления	

траектории		
Движение по прерывистой линии	Принципы интегрального управления	Робот, движущийся вдоль черной линии
Манипулятор	Определение касания –	Робот для квадро-
робота	рычаг, определение цвета	кегельринга
	предмета	
Определение	Датчик наклона на сонаре, на	Робот, выбирающий дорогу
наклонной	датчике освещенности, на	по пандусам
поверхности	контактных датчиках	
Конструкции	Циркуляция гусеничной и	Эксперименты с
роботов для	колесной платформ.	платформами
поворота в	Платформа на шаре	
ограниченном		
пространстве		